A Frequent Closed Itemsets Lattice-based Approach for Mining Minimal Non-Redundant Association Rules
نویسندگان
چکیده
There are many algorithms developed for improvement the time of mining frequent itemsets (FI) or frequent closed itemsets (FCI). However, the algorithms which deal with the time of generating association rules were not put in deep research. In reality, in case of a database containing many FI/FCI (from ten thousands up to millions), the time of generating association rules is much larger than that of mining FI/FCI. Therefore, this paper presents an application of frequent closed itemsets lattice (FCIL) for mining minimal non-redundant association rules (MNAR) to reduce a lot of time for generating rules. Firstly, we use CHARM-L for building FCIL. After that, based on FCIL, an algorithm for fast generating MNAR will be proposed. Experimental results show that the proposed algorithm is much faster than frequent itemsets lattice-based algorithm in the mining time.
منابع مشابه
A lattice-based approach for mining most generalization association rules
Traditional association rules consist of some redundant information. Some variants based on support and confidence measures such as non-redundant rules and minimal non-redundant rules were thus proposed to reduce the redundant information. In the past, we proposed most generalization association rules (MGARs), which were more compact than (minimal) non-redundant rules in that they considered th...
متن کاملMining Closed Itemsets in Data Stream Using Formal Concept Analysis
Mining of frequent closed itemsets has been shown to be more efficient thanmining frequent itemsets for generating non-redundant association rules. The task is challenging in data stream environment because of the unbounded nature and no-second-look characteristics. In this paper, we propose an algorithm, CLICI, for mining all recent closed itemsets in landmark window model of online data strea...
متن کاملUsing attribute value lattice to find closed frequent itemsets
Finding all closed frequent itemsets is a key step of association rule mining since the non-redundant association rule can be inferred from all the closed frequent itemsets. In this paper we present a new method for finding closed frequent itemsets based on attribute value lattice. In the new method, we argue that vertical data representation and attribute value lattice can find all closed freq...
متن کاملMining Constant Conditional Functional Dependencies for Improving Data Quality
This paper applies the data mining techniques in the area of data cleaning as effective in discovering Constant Conditional Functional Dependencies(CCFDs) from relational databases . These CCFDs are used as business rules for context dependent data validations. Conditional Functional Dependencies(CFDs) are an extension of Functional dependencies(FDs) which captures the consistency of data by su...
متن کاملMining Non- Redundant Frequent Pattern in Taxonomy Datasets using Concept Lattices
In general frequent itemsets are generated from large data sets by applying various association rule mining algorithms, these produce many redundant frequent itemsets. In this paper we proposed a new framework for Non-redundant frequent itemset generation using closed frequent itemsets without lose of information on Taxonomy Datasets using concept lattices. General Terms Frequent Pattern, Assoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1108.5253 شماره
صفحات -
تاریخ انتشار 2011